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ABSTRACT
Dynamic Item Response Models extend the standard Item
Response Theory (IRT) to capture temporal dynamics in
learner ability. While these models have the potential to al-
low instructional systems to actively monitor the evolution
of learner proficiency in real time, existing dynamic item re-
sponse models rely on expensive inference algorithms that
scale poorly to massive datasets. In this work, we propose
Variational Temporal IRT (VTIRT) for fast and accurate
inference of dynamic learner proficiency. VTIRT offers or-
ders of magnitude speedup in inference runtime while still
providing accurate inference. Moreover, the proposed algo-
rithm is intrinsically interpretable by virtue of its modular
design. When applied to 9 real student datasets, VTIRT
consistently yields improvements in predicting future learner
performance over other learner proficiency models.

Keywords
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1. INTRODUCTION
Evaluating the proficiency of a student is a fundamental task
in education, and decades-long research in psychometrics
have developed accurate probabilistic models to measure ev-
idence of proficiency from student behaviors [17]. Item Re-
sponse Theory (IRT) is the most well-known and widely ap-
plied probabilistic approach to proficiency modeling, which
recognizes each response as a joint outcome of item features
and student proficiency [19], and allows a single proficiency
value per student to be estimated from responses to multiple
assessment items.

However, in many routine aspects of educational practice,
instructors and computer-based learning systems often use

assessments more actively to assist learning rather than to
evaluate learner proficiency post-hoc. Such assessments are
referred to as formative assessments and are used not only
to track student learning and make appropriate instructional
interventions, but also to allow learners to practice their
knowledge and skills, and make necessary self-corrections
[17]. When learning occurs alongside assessment, learner
proficiency is longitudinal rather than inert, and the assump-
tion of static proficiency makes standard IRT less suitable
as a model of proficiency measurement.

Dynamic Item Response models [14, 11] mitigate this issue
by removing the assumptions of static ability and instead al-
lowing it to stochastically change over time, but existing in-
ference methods rely on expensive iterative algorithms with
heavy runtime bottleneck. These methods scale poorly to
massive datasets, which can be critical since in most use
cases of dynamic proficiency modeling (e.g., learner pro-
ficiency monitoring), evaluation often needs to take place
real-time to monitor the evolution of learner proficiency.
This means that the expensive cost of inference must be
incurred not just once, but multiple times over the course of
a learner’s learning experience.

In this paper, we develop Variational Temporal IRT (VTIRT),
a fast and accurate framework for inferring dynamic learner
proficiency over time. VTIRT is based on the idea of amor-
tized variational inference [13], a fast approximate Bayesian
inference framework for complex probabilistic models. The
resulting algorithm infers the ability trajectory of a learner
by first making local ability estimates in the form of a Gaus-
sian distribution based on the item and response at each
timestep (which we call the “ability potentials”), then ag-
gregating these ability estimates across time in an intuitive
fashion. In particular, our work delivers the following key
innovations1:

• Interpretable Inference for Dynamic IRT. VTIRT al-
lows the use of a structured probabilistic inference al-
gorithm for sequence models through the notion of
ability potentials, a form of conjugate potentials de-
scribed in [12]. We concretely derive VTIRT in detail

1Our public implementation of VTIRT based on PyTorch
and Pyro [3] is available online in the following repository:
https://github.com/yunsungkim0908/vtirt
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and discuss the explainability of each of its compo-
nents.

• Fast and Accurate Inference. Our proposed inference
algorithm yields orders of magnitude speedup in in-
ference runtime compared to existing inference algo-
rithms while maintaining accurate inference.

• Applications to Real World Datasets. We apply our in-
ference algorithm to 9 real student datasets. VTIRT
consistently yields improvements in predicting future
learner performance compared to other existing profi-
ciency models.

2. RELATED WORKS
Many studies [20, 18, 7, 21, 22, 14] have investigated dy-
namic extensions of IRT that allow learner proficiency to
vary over time. A common structure shared by these ap-
proaches is that student ability is assumed to follow a ran-
dom walk:

θ`,t = θ`,t−1 + ε`,t,

where ε`,t models a stochastic change in ability (often a zero-
mean Gaussian). [7] finds a coarse approximation to the
posterior distribution of per-time-step ability by ignoring the
cross-temporal dependencies in the likelihood function while
assuming knowledge of the item parameters. [14] and [21]
use Markov Chain Monte Carlo (MCMC) methods [4] to
estimate the unknown ability and item parameters. These
methods draw samples asymptotically from the true poste-
rior distribution conditioned on the observed responses, but
the convergence of MCMC can be slow. On the other hand,
[11] and [22] use Expectation-Minimization (EM) to itera-
tively estimate the dynamic item response parameters. In
particular, [11] uses variational EM (VEM) to estimate the
parameters of a distribution that closely approximates the
true posterior distribution conditioned on the observed re-
sponse. Although generally faster than MCMC-based meth-
ods, VEM methods still require costly iterative updates.

Closely related to the task of dynamic proficiency model-
ing is knowledge tracing [6, 16], which attempts to trace the
knowledge of learners over time and accurately predict fu-
ture performance. While Markov chain-based methods such
as BKT [6] allow proficiency to be numerically measured
through the estimated probability of being at a “proficient”
state, the knowledge state representations of neural network-
based knowledge tracing models [16] are not readily compa-
rable or interpretable. Logistic regression knowledge tracing
models offer simple and interpretable alternatives to neural
network-based models. BestLR [9] and LKT [15] belong to
this family of methods and use the number of correct and
incorrect attempts as input features, while DAS3H [5] ad-
ditionally embeds explicit representations of learning and
forgetting over spans of time. VTIRT produces numerical
representations of learner proficiency that are comparable by
design across learners and across time, and its interpretable
inference is also sensitive to the features of the attempted
items.

Amortized variational inference has been used in [24] to de-
velop VIBO for standard IRT. VIBO and its relationship to
VTIRT are further discussed in Section 4.4.

3. VARIATIONAL INFERENCE REVIEW
Variational inference is a Bayesian framework for efficiently
inferring unobserved variables in complex probabilistic mod-
els. In this setting, observations are modeled as samples
from some underlying probability distribution (called the
generative model) where some of the random variables (de-
noted r) are observed, and the remaining latent variables
(denoted z) are unobserved. The goal of Bayesian infer-
ence then is to infer the latent random variables by finding
the posterior distribution p(z|r) given our knowledge of the
likelihood distribution p(r|z) and the prior distribution p(z).
This has the effect of “updating” the prior belief p(z) with
the observations to obtain the posterior belief p(z|r).

For complex generative models, the posterior distribution
p(z|r) is often intractable to compute exactly. Variational
inference is one way of doing approximate posterior inference
that treats inference as an optimization problem, where we
find the distribution q(z) that is closest to the true posterior
p(z|r) from a more constrained (yet rich) family of distribu-
tions Q of our choice. This is achieved by maximizing an
objective called “Evidence Lower BOund” (ELBO) for the
observation r with respect to q

L(q) , Eq(z)
[

log p(r|z)p(z)
log q(z)

]
, (1)

which is equivalent to minimizing the Kullback-Leibler di-
vergence between q(z) and p(z|r)2 due to the following equal-
ity:

L(q) +KL (q(z)‖p(z|r)) = log p(r) ≡ Constant w.r.t q.

Amortized Inference. What we just described is how VI
works for a single observation. If we have a set of multiple
i.i.d. observations sampled from the data-generating distri-
bution pD (which will be equal to the marginal distribution
p(r) if our generative model is correctly chosen), then find-
ing the approximate posterior is equivalent to the following
optimization problem

arg max
q
L(q) , EpD(r)

[
Eqr(z)

[
log p(r, z)

log qr(z)

]]
(2)

where we find one variational posterior factor qr for each ob-
servation r. As the number of observations grows, however,
finding qr for each observation can quickly become highly in-
efficient. Amortized Variational Inference [8] tries to avoid
this issue by learning a mapping φ(r) (also called the “recog-
nition model”) that maps observations to the parameters of
the corresponding posterior distribution, rather than infer-
ring each approximate posterior on the fly. By training a
good recognition model ahead of time based on data and
using it to retrieve the posterior distribution almost instan-
taneously at inference time, the cost of per-observation in-
ference can be amortized [8]. Now we can choose the recog-
nition model from a highly expressive family of functions
(e.g., a neural network) and optimize the recognition model

2In fact, if Q includes the true posterior, then the q that
achieves optimality will exactly be the the true posterior.



instead:

arg max
φ
L(φ) , arg max

φ
EpD(r)

[
Eqφ(r)(z)

[
log p(r, z)

log qφ(r)(z)

]]
.

(3)

4. THE VTIRT FRAMEWORK
Based on the ideas of variational inference introduced ear-
lier, we are now ready to describe the generative model and
the inference algorithm that together comprise the VTIRT
framework. The main intuition behind VTIRT’s generative
model is to incorporate temporality into IRT in a way simi-
lar to [7, 23]. Our framework, however, offers the additional
flexibility to use any form of the item characteristic func-
tion - potentially with learnable parameters - whereas prior
methods are constrained to a specific functional form.

4.1 The Temporal Ability Model
In our generative model (Figure 1a), we assume that the
response r`,t of learner ` at timestep t is determined by 2-
parameter IRT,

p (r`,t|θ, a, d) = f
(
aq`,t

(
θ`,t − dq`,t

))
, (4)

where q`,t denotes the assessment item, θ`,t ∈ [−∞,∞] de-
notes the ability of learner ` at timestep t, aq and dq each
denote the discrimination and difficulty of assessment item
q, and f denotes the linking function. To infuse temporality,
we take an approach similar to [7, 23] and impose an addi-
tional assumption that a learner’s ability is sampled from
a random walk with Gaussian noise, also called a Wiener
Process:

θ`,t+1|θ`,t ∼ N (θ`,t, σ
2
θ), θ`,0 ∼ N (0, σ2

θ).

This is an instance of a more general Linear Gaussian model
(LGM)

θ`,t+1|θ`,t ∼ N (α`,t · θ`,t + β`,t, s`,t) (5)

where the scale, bias, and standard deviation parameters are
set to (α`,t, β`,t, s`,t) = (1, 0, σθ).

3

The most popular choice for the linking function is the sig-
moid function for 2 parameter logistic (2PL) IRT and Gaus-
sian CDF for 2 parameter O-give (2PO) IRT. We will use
2PL as our modeling choice in our experiments considering
its popularity [19]. It is important to note, however, that
VTIRT makes no assumption about the linking function f
as long as f is differentiable. Moreover, we can straightfor-
wardly extend the model to admit a parameterized custom
linking function fψ which we can learn from data. A similar
approach in [24] has proven to yield better fit and higher
predictive performance in the case of standard IRT, and we
leave this extension to future research. This is in contrast
to prior algorithms [7, 23] that become intractable for any
linking functions other than a Gaussian CDF.

4.2 Choosing the Variational Family Q
3To allow for a fully Bayesian treatment, we also impose a
Gaussian prior distribution on the item parameters: aq ∼
N (1, σ2

a), and dq ∼ N (0, σ2
d).

To do inference on our generative model, we first need to
choose the variational family Q. We will choose Q to be the
family of distributions that factorize as follows:

q(ξ, θ; r) = q(ξ)q(θ|ξ, r) =

(∏
q

q(ξq)

)(∏
`

q(θ`|ξ, r)

)
,

(6)
where we have used the shorthand notation ξq = (aq, dq) to
denote the features of the assessment item q. Since we are
interested in inferring the temporal trajectory of abilities,
we will choose q(θ|ξ, r) to be a Linear Gaussian Model just
as its prior p(θ), and also choose q(ξ) to be Gaussian. More
precisely, we define q(θ|ξ, r) such that

θ`,t+1|θ`,t, ξ, r` ∼ N (α`,t · θ`,t + β`,t, s`,t) (7)

whose scale α`,t, bias β`,t, and standard deviation s`,t pa-
rameters are dependent on ξ and r`. Recalling the varia-
tional lower bound from Equation (1), our objective becomes

L(q) = Eq(ξ)q(θ|ξ,r)
[
p(ξ)p(θ)p(r|ξ, θ)
q(ξ)q(θ|ξ, r)

]
. (8)

Since the parameters α`, β` and s` are dependent on the
item parameters ξ and observed responses r`, it is tempt-
ing to apply the idea of amortized inference from Section 3
directly and model these parameters using learnable map-
pings. One such approach that we call VTIRTdir-loc is to map
the transition parameters at each timestep 1 ≤ t ≤ T based
on the item parameters and responses from that timestep

α`,t, β`,t, s`,t = φ
(
ξq`,t , r`,t

)
. (9)

While this approach is modular and its recognition model
is low-dimensional and visualizable, its parameter estimates
are not allowed to depend on responses through time, which
may produce sub-optimal fit as we will later demonstrate
through experiments. To allow dependence through time,
we could instead choose to use a sequence-to-sequence recog-
nition network (such as an LSTM network) to estimate the
parameters for all time-steps at once using the entire se-
quence of responses:

α`,1:T , β`,1:T , s`,1:T = φ
(
ξq`,1:T , r`,1:T

)
. (10)

We call this approach VTIRTdir-s2s. While this uses a more
expressive mapping, the increased complexity comes at the
cost of interpretability and potentially a greater demand for
more training data and long input sequences.

To mitigate this trade-off, we instead opt for an approach
that is both modular enough to yield interpretability and yet
also allows parameter estimates to depend on the responses
through time.

4.3 VTIRT’s Inference Algorithm
To describe our main inference method VTIRT, we first draw
our attention to the following property about Linear Gaus-
sian Models and Wiener processes, which will be founda-
tional to our proposed method (See Appendix A for the
proof):

Theorem 1. Let p(θ1:T ) be a Wiener process with stan-
dard deviation σθ and q(θ1:T ) be a probability distribution
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Figure 1: Graphical model view of VTIRT’s generative model and inference model. Shaded nodes indicate observed variables,
and arrows denote the direction of dependence. Squares denote the ability potentials in the form of a Gaussian density.

defined as

q(θ1:T ) ∝ p(θ1:T )

T∏
t=1

exp

{(
θt − µt
σt

)2
}
, (11)

for real numbers µ1,...,T and σ1,...,T .

Then, q(θ1:T ) is a Linear Gaussian Model4

θt|θt−1 ∼ N (µ̃t, σ̃t) (12)

with

µ̃t =

(
λθθt−1 + λtµt + (ρt+1λθ)τt+1

λθ + λt + (ρt+1λθ)

)
(13)

and

σ̃t = σθ
√

1− ρt+1, (14)

where λθ = 1/σ2
θ and λt = 1/σ2

t denote precisions and pa-
rameters ρt and τt are defined recursively as

ρt =

(
λt + (ρt+1λθ)

λθ + λt + (ρt+1λθ)

)
, ρT+1 = 0 (15)

and

τt =

(
λtµt + (ρt+1λθ)τt+1

λt + (ρt+1λθ)

)
, τT+1 = 0. (16)

In Equation (11), we are defining q by attaching local “ability
potentials” to the prior distribution p, where each potential
term is in the form of a Gaussian density with mean µt and
variance σ2

t . These potentials could be understood as local
“beliefs” about the ability in the form of Gaussian distribu-
tions, judged solely based on the item features and learner
response at the current timestep.

These potentials are combined across time with the prior
distribution p(θ). The resulting θt follows a Gaussian distri-
bution whose mean is a weighted average of the following 3
values that each represent information from different points
in time (Figure 2): (1) θt−1 of the previous timestep, (2) the
local potential mean µt of the current timestep, and (3) the
“future potential aggregate” τt+1 that recursively aggregates
potentials backwards from future timesteps via weighted av-
eraging (Equation (16)). Each value is weighted proportion-
ally to the precision (or “inverse uncertainty”) associated

4For notational convenience, we will use θ0 = 0
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Figure 2: Schematic of VTIRT’s inference at each timestep.

with it5, so the term with the lowest uncertainty contributes
most to the resulting mean.

Therefore, Theorem 1 suggests a way to aggregate local abil-
ity estimates (Gaussian ability potentials) across timesteps
using the global prior structure of the generative model.
This motivates us to choose the following family of distribu-
tions for our variational factor q(θ) (Figure 1b):

q(θ`) ∝ p(θ`)
∏
t

exp

{(
θ`,t − µ(ξq`,t , r`,t)

σ(ξq`,t , r`,t)

)2
}
, (17)

where µ(·, ·) and σ(·, ·) are parameterized functions (e.g.,
feed-forward neural networks) that play the role of the recog-
nition model. We refer to the resulting inference algorithm
as VTIRT.

4.4 Conjugate Potentials and Variational IRT
VTIRT can be considered as a special case of using conjugate
potential functions [12] to conduct approximate Bayesian
inference, which allows intuitive and efficient inference al-
gorithms designed for conditionally conjugate models to be
used even when the model violates conjugacy. Specifically,
the ability potentials in VTIRT enable efficient computa-
tion of variational posterior factors using a fast forward-
backward inference algorithm for Linear Gaussian Models
outlined in Theorem 1.

VIBO [24], an amortized variational inference algorithm for
standard IRT, also belongs to this family of methods. In
VIBO, the variational posterior distribution for ability is
a Product-of-Experts where each “expert” component is a
Gaussian distribution that depends locally on the response
and item parameters from each timestep. These “experts”
are also a form of conjugate potentials that allow variational
posterior factors to be computed in closed-form.

5ρtλθ can be viewed as the effective precision of the infor-
mation coming from future timesteps.



Table 1: Statistics of the Workspace Learning Dataset

Course Name Items Learners Interactions

Interviewing 1 89 79,808 5,458,576
Interviewing 2 12 10,536 120,388

Design Thinking 12 45,369 458,232
Software Development 8 10,277 80,137

Document Writing 13 20,043 233,175
Management A-1 28 10,154 247,674
Management A-2 16 14,673 198,720
Management B-1 14 21,293 281,844
Management B-2 14 15,254 206,108

This leads to several commonalities in both frameworks.
Both use the same set of learnable parameters - the Gaus-
sian posterior parameters (µaq , µdq , σ2

aq , σ2
dq ) for each item

q, and two recognition function components µ(·, ·) and σ(·, ·)
- and make inference by aggregating local ability potentials.
While VIBO aggregates the conjugate potentials into a sin-
gle univariate distribution over ability through a Product-
of-Experts, VTIRT aggregates them into a Linear Gaussian
Model based on Theorem 1. In Section 5, we will demon-
strate through experiments that this difference in aggrega-
tion leads to VTIRT’s performance improvement.

5. EVALUATION
We will now demonstrate that VTIRT achieves orders of
magnitude faster inference than existing methods without
compromising inference quality while also providing an in-
terpretable structure. Experiments with real student data
will also demonstrate that VTIRT yields a better fit to stu-
dent behaviors than other learner proficiency models. We
first describe the 2 datasets we used for our experiments.

5.1 Datasets
5.1.1 Synthetic Dataset

Using a simulated dataset enables us to test our algorithm
under various hypothetical circumstances. We use VTIRT’s
generative model to simulate a set of learners responding to
assessment items in an arbitrary order. For each learner,
we first choose a random permutation of assessment items
to simulate learners responding to assessment items in arbi-
trary order. Responses to these items are sampled based on
the generative model defined in Section 4.1. This gives us
access to the ground-truth item features and ability values
that are otherwise unobtainable in real-world datasets. We
set σθ = 0.25 and σa = σd = 1 and vary the number of
learners and the number of items.

5.1.2 Real Student Dataset: Workplace Learning
This dataset contains anonymized learner responses to a se-
ries of assessment questions in workplace learning courses
taken by employees of a company. Each interaction record
consists of (1) the ID of the assessment item (question), (2)
ID of the learner, (3) correctness of the attempt, and (4) the
knowledge components6 with which each assessment item is
associated (of which there could be multiple). Learners with
fewer than 5 interactions throughout the course were omit-
ted, and if there were multiple attempts to a question, only

6Most courses had 2-4 knowledge components.

the first attempts were retained. A set of summary statistics
for this dataset is presented in Table 1.

5.2 Fast and Accurate Inference
The most important quality of an inference algorithm is its
capacity to promptly and reliably recover the unobserved
variables based on past observations. The synthetic dataset
allows us to measure this by comparing the computational
runtime of a single instance of inference and computing the
correlation of the inferred ability and item features against
the known ground-truth values.

We implemented the 3 variants of VTIRT (VTIRTdir-loc,
VTIRTdir-s2s, and VTIRT) along with 3 existing baseline
inference methods - Variational EM (VEM), MCMC using
Hamiltonian Monte Carlo7 (HMC), and TSKIRT [7] - and
used these algorithm to recover the latent ability values and
item features for all learners and trials, based on the re-
sponses from all timesteps. (See Appendix B for more de-
tails about the methods and the experiment.) We varied the
number of items from 32 to 500 while fixing the number of
learners to 5000, then varied the number of learners from
2,500 to 20,000 while fixing the number of items to 250.

Figure 3 plots the inference time and Pearson correlations
of the model estimates with the ground-truth values. Most
notably, all 3 variants of VTIRT are orders of magnitude
faster than other inference methods. Moreover, VTIRT con-
sistently yields the best discrimination estimates. Except
when there are few items, the difference in the quality of
ability and difficulty estimates are also minor compared to
VEM (up to 0.07 difference in ability correlation and 0.03
difference in difficulty correlation).

Among all variants of VTIRT, VTIRT using ability poten-
tials consistently outperforms direct amortization. As noted
earlier, VTIRTdir-loc ignores temporal dependency in esti-
mating the transition dynamics, while the complexity of
VTIRTdir-s2s could come at the cost of the need for more
training data and long input sequences.

5.3 Application to Real Student Data
We now compare VTIRT with other proficiency models in
modeling real student data. Since we do not have access to
the ground-truth learner ability in reality, our evaluation on
real student data must be based on a related proxy metric.
As a proxy, we will focus on the task of predicting the next
step response correctness of learners based on the model’s
current ability estimates and item features.8

We compared the predictive performance of VTIRT against
the following baseline: IRT, BKT, VIBO[24]9, VTIRTdir-loc,

7Hamiltonian Monte Carlo [2, 10] is an efficient MCMC al-
gorithm for continuous state spaces.
8Since the items in each course were associated with different
knowledge components, we estimated learner ability for each
knowledge component separately. Prediction on each item
was made based on the ability averaged across the knowledge
components associated with that item.
9To adopt VIBO to a sequential estimation setting, we com-
puted the ability estimates at each timestep separately using
the responses prior to that timestep.
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Figure 3: Performance on the synthetic dataset. Inference time was capped at 10 hours.

Table 2: Next-Step Performance Prediction ROC.

IRT BKT VIBO VTIRT VTIRTdir-loc VTIRTdir-s2s VTIRTtransfer

Interviewing 1 0.702 0.622 0.752 0.762 0.758 0.749 0.756
Interviewing 2 0.586 0.632 0.765 0.779 0.774 0.772 0.760

Software Development 0.565 0.648 0.701 0.711 0.695 0.667 0.702
Design Thinking 0.602 0.605 0.674 0.681 0.677 0.646 0.633

Document Writing 0.503 0.683 0.754 0.770 0.766 0.750 0.746
Management A-1 0.518 0.639 0.717 0.738 0.734 0.729 0.723
Management A-2 0.705 0.682 0.771 0.774 0.770 0.766 0.770
Management B-1 0.570 0.582 0.734 0.741 0.739 0.730 0.735
Management B-2 0.733 0.602 0.766 0.770 0.766 0.765 0.766

and VTIRTdir-s2s.
10 To study the effect of VTIRT’s forward-

backward inference algorithm, we also analyzed the perfor-
mance of a variant of VTIRT we call VTIRTtransfer in which
we train the recognition networks using VIBO and perform
inference using VTIRT’s inference algorithm.

Table 2 reports the average AUROC on this prediction task
over a 5-fold cross-validation, where the learners were split
into 5 equally-sized splits. These results suggest the follow-
ing observations:

VTIRT consistently outperforms other proficiency models.
VTIRT achieves up to 2.1 AUROC point advantage in
comparison to the best performing baseline, VIBO. As
VIBO and VTIRT share the same parameterization
scheme, the increased performance is attributable to
the VTIRT framework.

Ability potentials are more effective than direct amortization.
VTIRT using ability potentials outperforms both the
local and sequence-to-sequence direct amortization vari-
ants. It is interesting to note that local direct amor-

10We used the popular MIRT package in R for the IRT base-
line, and the implementation from the pyBKT package [1]
for the BKT baseline. Since VTIRT and VIBO’s estimates
take the form of a probability distribution, we used the mean
of the distribution as the model’s point-estimate and fed it
as input to the 2PL IRT likelihood function in Equation (4)
to compute the predicted probability of correctness.

tization also outperformed LSTM-based sequence-to-
sequence direct amortization in all courses, which may
be due to relatively short sequence length per knowl-
edge component.

VTIRT’s training mechanism is critical to its performance.
Since VTIRT and VIBO have the same parameteri-
zation schemes, it is natural to ask whether VTIRT’s
sequential training could be replaced with VIBO’s par-
allelizable training without much loss in performance.
Comparing the performance of VTIRTtransferwith VTIRT,
we see that VTIRT’s training mechanism is crucial
to the enhanced performance, and VTIRTtransferoften
performs far worse than VIBO itself.

5.4 Interpretability of VTIRT
VTIRT is a modular algorithm, and by virtue of its struc-
ture, all parts of its operations are intrinsically interpretable.
The ability estimates are computed from the local ability po-
tentials, following the logic outlined in Section 4.3. These
ability potentials provide “local beliefs” of the learner’s abil-
ity at each timestep in the form of a Gaussian distribution
and are aggregated through the forward-backward inference
algorithm based on Theorem 1.

One of the merits of this potential function is that its dimen-
sions are low enough to be visually analyzed. Figure 4 is a
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Figure 4: Mean and log variance of the ability potentials as
a function of the item correctness and item features.

plot of the mean and log variance11 of the potential function
for the “Interviewing 2” course for typical parameter ranges,
and its shape aligns with our intuitive expectations of how
a learner’s response would affect our belief of its ability de-
pending on the item features. In particular,

• For assessment items of any difficulty and discrimi-
nation, a correct response always yields higher ability
estimate than an incorrect response (which can be seen
from the range of the color bar).

• The uncertainty of the ability estimates are generally
lower (so the model is more certain about its estimates)
for items with higher discrimination. This aligns with
the expectation that high discrimination items are use-
ful for distinguishing learners with different abilities.

• Correct responses to high-difficulty items yield poten-
tials with greater mean and lower uncertainty than
correct responses to low-difficulty questions (and the
opposite for incorrect responses).12

6. LIMITATIONS AND FUTURE WORK

Adaptive and Self-Directed Learning. The key charac-
teristic of VTIRT is its ability to make sequential ability
estimates from responses to a set of heterogeneous assess-
ment items. For this reason, we hypothesize that the ideal
environment for VTIRT in comparison to other proficiency

11High variance indicates large uncertainty.
12Although it may seem as if correct responses to low-
discrimination items yield higher ability estimates because
the mean parameter is greater, the overall distribution is in
fact flatter and more spread out in general due to higher
variance.

models is one where learners possess great agency in choos-
ing their learning trajectories, or where the learning tra-
jectories are adjusted adaptively to the performance of the
learner. However, most learners in our real student dataset
followed similar learning trajectories with little variability,
and this hypothesis remains untested. An important direc-
tion for future work would be to test our framework in an
adaptive or self-directed learning environment.

Modeling Assumptions of VTIRT. One interesting topic
for future research is the modeling assumption made by
VTIRT. VTIRT’s generative model builds on a simple as-
sumption that learner ability starts close to 0 and that the
changes in ability are Gaussian with mean 0. Under this gen-
erative model, the temporal changes in ability may take on
both positive and negative values. While we have shown us-
ing real student data that the resulting inference algorithm
yields a more accurate fit, research remains to be done to
examine how the modeling assumptions could be further im-
proved.

Ability Potential for Atypical Item Parameter Values.
In Section 5.4, we visualized in Figure 4 the trained ability
potential function for one of the datasets for typical ranges
of the item parameter values. Yet, the input to the potential
function can be any tuple ξ = (a, d) of unbounded real num-
bers, and the typical range of input observed during training
comprise only a very small subset of this domain. For values
of the item parameters outside this typical range, the trained
potential function may fail to generalize as a result of sparse
training signal and exhibit arbitrary behaviors. Enhancing
the generalizability of the potential function and its robust-
ness to extreme values of the item parameters is an exciting
direction for future research.

Logistic Regression Knowledge Tracing Models. Logis-
tic regression models of knowledge tracing such as BestLR [9]
or LKT [15] share several similarities with VTIRT. As noted
earlier, these models use the number of correct and incorrect
past attempts in a learning trajectory to predict future per-
formance, and VTIRT makes inference on ability based on
both the historical performance of the learner and the fea-
tures of the attempted items. While the focus of this study
was to develop scalable inference for dynamic IRT models
and compare the model fit against other proficiency models,
it remains an interesting future research to compare VTIRT
against logistic regression knowledge tracing models under
both adaptive and non-adaptive learning environments.

7. CONCLUSION
We presented VTIRT, a fast and accurate inference frame-
work for dynamic item response models. VTIRT offers or-
ders of magnitude speedup in the inference runtime while
maintaining a highly accurate inference of learner and item
parameters. Moreover, every component of our inference al-
gorithm is interpretable by virtue of its modular design. Ex-
periments on real student data demonstrates that VTIRT
achieves improvements in inferring future learner perfor-
mance compared to other proficiency models.
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APPENDIX
A. PROOF OF THEOREM 1
We will first find the parameters αt, βt, st of the resulting
Linear Gaussian Model (Equation (5)) by solving for the
following equation:

log q(θ1:T )

=

(
θ1
σθ

)2

+

T∑
t=1

{(
θt − θt−1

σθ

)2

+

(
θt − µt
σt

)2
}

+ C

=

(
θ1 − β1
s1

)2

+

T∑
t=2

(
θt − αtθt−1 − βt

st

)2

+ C′, (18)

where C and C′ are constants with respect to θ1:T . Re-
arranging terms and comparing the coefficints of the terms
involving θtθt−1, we obtain

st = σθ
√
αt.

Substituting this into Equation (18) and comparing the terms
involving θt and θ2t , we obtain the following recursive system
of equations:

αt =
λθ

λθ + λt + (1− αt+1)λθ
,

βt =
µtλt + βt+1λθ

λθ + λt + (1− αt+1)λθ
,

where αT+1 = 1 and βT+1 = 0 are defined for notational
simplicity. Note from the above equation that

bt
1− αt

=
λt + (1− αt+1)λθ

µtλt + (1− αt+1)λθ
(

βt+1

1−αt+1

) .



This motivates us to define ρt = 1−αt and τt = βt
1−αt , which

yields the formula in Equations (15) and (16):

ρt =

(
λt + (ρt+1λθ)

λθ + λt + (ρt+1λθ)

)
, τt =

(
λtµt + (ρt+1λθ)τt+1

λt + (ρt+1λθ)

)
.

µ̃t in Equation (12) then satisfies

µ̃t = αtθt−1 + βt = (1− ρt)θt−1 + ρtτt

=

(
λθθt−1

λθ + λt + (ρt+1λθ)

)
+

(
λtµt + (ρt+1λθ)τt+1

λθ + λt + (ρt+1λθ)

)
=

(
λθθt−1 + λtµt + (ρt+1λθ)τt+1

λθ + λt + (ρt+1λθ)

)
,

and σ̃t = st = σθ
√
at = σθ

√
1− ρt.

B. EXPERIMENT DETAILS
For all implementation of the VTIRT variants, we used a
2-layer feedforward neural network with 16 dimensional hid-
den layers with GELU activation for the potential function.

While TSKIRT requires the item parameters to be learned in
advance using standard IRT, we used the ground-truth item
parameters instead of training the item parameters with a
different model - all other algorithms had to infer the item
parameters from scratch.

All experiments were run on identically configured CPU ma-
chines (2 AMD EPYC 7502 32-Core Processors and 10 gi-
gabytes of memory) until convergence for a maximum of 10
hours, with the exception of VEM. VEM makes batch up-
dates to the latent posterior estimates, and its item parame-
ter updates can be significantly sped up through vectorized
indexing. This speedup, however, incurs a large memory
overhead. To make a conservative comparison of VTIRT’s
run time performance against the ideal setup for VEM, we
applied this vectorization to VEM, but had to allow it to use
4 times the memory allocated to other methods, especially
for the larger datasets.


